Search results for "Kinetic Theory"

showing 10 items of 26 documents

A Derivation of the Vlasov-Stokes System for Aerosol Flows from the Kinetic Theory of Binary Gas Mixtures

2016

In this short paper, we formally derive the thin spray equation for a steady Stokes gas, i.e. the equation consists in a coupling between a kinetic (Vlasov type) equation for the dispersed phase and a (steady) Stokes equation for the gas. Our starting point is a system of Boltzmann equations for a binary gas mixture. The derivation follows the procedure already outlined in [Bernard-Desvillettes-Golse-Ricci, arXiv:1608.00422 [math.AP]] where the evolution of the gas is governed by the Navier-Stokes equation.

Binary numberKinetic energy01 natural sciencesBoltzmann equationPhysics::Fluid Dynamics35Q20 35B25 82C40 76T15 76D07symbols.namesakeMathematics - Analysis of PDEshydrodynamic limitPhase (matter)FOS: Mathematics[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP][PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Fluid mechanics [physics.class-ph]sprays0101 mathematicsSettore MAT/07 - Fisica MatematicaVlasov-Stokes systemPhysicsNumerical Analysisgas mixture.010102 general mathematicsMSC Primary: 35Q20 35B25; Secondary: 82C40 76T15 76D07.Stokes flowBoltzmann equationAerosol010101 applied mathematicsClassical mechanicsModeling and SimulationBoltzmann constantKinetic theory of gasessymbolsVlasov-Stokes system Boltzmann equation Hydrodynamic limit Aerosols Sprays Gas mixtureaerosolsAnalysis of PDEs (math.AP)
researchProduct

FROM DISCRETE KINETIC AND STOCHASTIC GAME THEORY TO MODELLING COMPLEX SYSTEMS IN APPLIED SCIENCES

2004

This paper deals with some methodological aspects related to the discretization of a class of integro-differential equations modelling the evolution of the probability distribution over the microscopic state of a large system of interacting individuals. The microscopic state includes both mechanical and socio-biological variables. The discretization of the microscopic state generates a class of dynamical systems defining the evolution of the densities of the discretized state. In general, this yields a system of partial differential equations replacing the continuous integro-differential equation. As an example, a specific application is discussed, which refers to modelling in the field of…

Class (set theory)Partial differential equationDiscretizationField (physics)Dynamical systems theoryApplied Mathematicspopulation modelsMathematical analysisStochastic gameBoltzmann modelsComplex systemnonlinearityModeling and SimulationApplied mathematicsProbability distributiondiscretizationKinetic theoryMathematicsMathematical Models and Methods in Applied Sciences
researchProduct

Large-N kinetic theory for highly occupied systems

2018

We consider an effective kinetic description for quantum many-body systems, which is not based on a weak-coupling or diluteness expansion. Instead, it employs an expansion in the number of field components N of the underlying scalar quantum field theory. Extending previous studies, we demonstrate that the large-N kinetic theory at next-to-leading order is able to describe important aspects of highly occupied systems, which are beyond standard perturbative kinetic approaches. We analyze the underlying quasiparticle dynamics by computing the effective scattering matrix elements analytically and solve numerically the large-N kinetic equation for a highly occupied system far from equilibrium. T…

Field (physics)Lattice field theoryFOS: Physical sciencesFixed point01 natural sciencesMany-body problemHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencessirontanonperturbative effects in field theoryQuantum field theory010306 general physicsdynamiikkaPhysicsta114010308 nuclear & particles physicsScalar (physics)finite temperature field theoryultracold gasesHigh Energy Physics - PhenomenologyDistribution functionClassical mechanicsQuantum Gases (cond-mat.quant-gas)Kinetic theory of gaseskvanttikenttäteoriaCondensed Matter - Quantum Gasesrelativistic heavy-ion collisions
researchProduct

Derivation of Models for Thin Sprays from a Multiphase Boltzmann Model

2017

We shall review the validation of a class of models for thin sprays where a Vlasov type equation is coupled to an hydrodynamic equation of Navier–Stokes or Stokes type. We present a formal derivation of these models from a multiphase Boltzmann system for a binary mixture: under suitable assumptions on the collision kernels and in appropriate asymptotics (resp. for the two different limit models), we prove the convergence of solutions to the multiphase Boltzmann model to distributional solutions to the Vlasov–Navier–Stokes or Vlasov–Stokes system. The proofs are based on the procedure followed in Bardos et al. (J Stat Phys 63:323–344 (1991), [2]) and explicit evaluations of the coupling term…

Gas mixturePhysicsMathematics::Analysis of PDEsBinary numberType (model theory)Coupling (probability)Boltzmann equationBoltzmann equationSprayPhysics::Fluid Dynamicssymbols.namesakethin spraymultiphase boltzmann modelConvergence (routing)Boltzmann constantsymbolsKinetic theory of gasesHydrodynamic limitApplied mathematicsTwo-component systems Vlasov-Navier-Stokes systemStatistical physicsLimit (mathematics)Aerosol
researchProduct

Non-Local Scattering Kernel and the Hydrodynamic Limit

2007

In this paper we study the interaction of a fluid with a wall in the framework of the kinetic theory. We consider the possibility that the fluid molecules can penetrate the wall to be reflected by the inner layers of the wall. This results in a scattering kernel which is a non-local generalization of the classical Maxwell scattering kernel. The proposed scattering kernel satisfies a global mass conservation law and a generalized reciprocity relation. We study the hydrodynamic limit performing a Knudsen layer analysis, and derive a new class of (weakly) nonlocal boundary conditions to be imposed to the Navier-Stokes equations.

GeneralizationMathematical analysisStatistical and Nonlinear PhysicsKnudsen layerStokes flowBoltzmann equationPhysics::Fluid Dynamicssymbols.namesakeNonlocal boundary conditions Fluid dynamic limit Navier-Stokes Boltzmann equationsClassical mechanicsStokes' lawKinetic theory of gasessymbolsLimit (mathematics)Conservation of massMathematical PhysicsMathematicsJournal of Statistical Physics
researchProduct

Harmonic Analysis of Unstable Systems

2003

Harmonic analysisPhysicsClassical mechanicsQuantum mechanicsKinetic theory of gases
researchProduct

Weak and strong coupling equilibration in nonabelian gauge theories

2015

We present a direct comparison studying equilibration through kinetic theory at weak coupling and through holography at strong coupling in the same set-up. The set-up starts with a homogeneous thermal state, which then smoothly transitions through an out-of-equilibrium phase to an expanding system undergoing boost-invariant flow. This first apples-to-apples comparison of equilibration provides a benchmark for similar equilibration processes in heavy-ion collisions, where the equilibration mechanism is still under debate. We find that results at weak and strong coupling can be smoothly connected by simple, empirical power-laws for the viscosity, equilibration time and entropy production of t…

High Energy Physics - TheoryNuclear and High Energy Physicsquark-gluon plasmaNuclear TheoryeducationNuclear TheoryFOS: Physical sciences114 Physical sciencesperturbative QCD01 natural sciencesNuclear Theory (nucl-th)ViscosityHigh Energy Physics - Phenomenology (hep-ph)AdS-CFT correspondencePhase (matter)0103 physical sciencesGauge theoryNuclear Experiment010306 general physicsCouplingPhysicsta114010308 nuclear & particles physicsEntropy productionkvarkki-gluoniplasmaHigh Energy Physics - PhenomenologyHigh Energy Physics - Theory (hep-th)Flow (mathematics)Quantum electrodynamicsKinetic theory of gasesStrong couplingParticle Physics - Theoryholography and quark-gluon plasmasJournal of High Energy Physics
researchProduct

On modeling the immune competition with Darwinian dynamics

Mathematical and computational models are increasingly used in this century to help modeling of living systems. Mathematical modeling presents many methods for studying and analyzing the behavior of biological systems, in particular, cellular systems. As Bellomo (2008), Bellouquid and Delitala (2006), suggest " The modeling of living systems is not an easy task, it requests technically complex mathematical methods to deal with the inner complexity of biological systems which exhibit features and behaviors very different from those of inert matter". The mathematical approach used in this dissertation is based on the Kinetic Theory of Active Particles (KTAP), that has been specifically develo…

Kinetic theory of active particles evolution active particles mutations multicellular system.Settore MAT/07 - Fisica Matematica
researchProduct

A Formal Passage From a System of Boltzmann Equations for Mixtures Towards a Vlasov-Euler System of Compressible Fluids

2019

A formal asymptotics leading from a system of Boltzmann equations for mixtures towards either Vlasov-Navier-Stokes or Vlasov-Stokes equations of incompressible fluids was established by the same authors and Etienne Bernard in: A Derivation of the Vlasov-Navier-Stokes Model for Aerosol Flows from Kinetic Theory Commun. Math. Sci., 15: 1703–1741 (2017) and A Derivation of the Vlasov-Stokes System for Aerosol Flows from the Kinetic Theory of Binary Gas Mixtures. KRM, 11: 43–69 (2018). With the same starting point but with a different scaling, we establish here a formal asymptotics leading to the Vlasov-Euler system of compressible fluids. Explicit formulas for the coupling terms are obtained i…

Mathematics::Analysis of PDEsBinary number01 natural sciencesCompressible flow010305 fluids & plasmasPhysics::Fluid DynamicsBoltzmann equationSpraysymbols.namesakeIncompressible flow0103 physical sciences0101 mathematicsScalingAerosolSettore MAT/07 - Fisica MatematicaMathematicsGas mixtureApplied MathematicsVlasov-Euler systemHard spheresEuler system010101 applied mathematicsClassical mechanicsBoltzmann constantsymbolsKinetic theory of gasesHydrodynamic limit
researchProduct

On Discovering Low Order Models in Biochemical Reaction Kinetics

2007

We develop a method by which a large number of differential equations representing biochemical reaction kinetics may be represented by a smaller number of differential equations. The basis of our technique is a conjecture that the high dimension equations of biochemical kinetics, which involve reaction terms of specific forms, are actually implementing a low dimension system whose behavior requires right hand sides that can not be biochemically implemented. For systems that satisfy this conjecture, we develop a simple approximation scheme based on multilinear algebra that extracts the low dimensional system from simulations of the high dimension system. We demonstrate this technique on a st…

Multilinear algebraNonlinear systemBasis (linear algebra)Dimension (vector space)Settore ING-INF/04 - AutomaticaSimple (abstract algebra)Differential equationMathematical analysisChaoticApplied mathematicsDimensional modelingKinetic theory Nonlinear equations Polynomials Differential equationsMathematics
researchProduct